Source code for cr.sparse._src.lop.onb

# Copyright 2021 CR-Suite Development Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import jax.numpy as jnp
import jax.numpy.fft as jfft

from .impl import _hermitian
from .lop import Operator

import cr.sparse as crs
import cr.nimble.dsp as crdsp

[docs]def fourier_basis(n): """Returns an operator which represents the DFT orthonormal basis Forward operation is akin to computing inverse fast fourier transform scaled by :math:`\\sqrt{n}` Adjoint operation is akin to computing forward fast fourier transform scaled by :math:`1/\\sqrt{n}` """ n2 = jnp.sqrt(n) n3 = 1/n2 times = lambda x: n2*jnp.fft.ifft(x, n, axis=0) trans = lambda x : n3*jnp.fft.fft(x, n, axis=0) return Operator(times=times, trans=trans, shape=(n,n), real=False)
[docs]def dirac_fourier_basis(n): """Returns an operator for a two-ortho basis dictionary consisting of Dirac basis and Fourier basis """ n2 = jnp.sqrt(n) n3 = 1/n2 times = lambda x: x[:n] + n2*jnp.fft.ifft(x[n:], n, axis=0) trans = lambda x : jnp.concatenate((x, n3*jnp.fft.fft(x, n, axis=0)), axis=0) return Operator(times=times, trans=trans, shape=(n,2*n), real=False)
[docs]def cosine_basis(n): """Returns an operator which represents the DCT-II orthonormal basis Forward operation is akin to computing inverse discrete cosine transform scaled appropriately Adjoint operation is akin to computing forward discrete cosine transform scaled appropriately """ factor = jnp.sqrt(2*n) ks = jnp.arange(n) phi_f = jnp.exp(1j*jnp.pi*ks/(2*n)) phi_f = phi_f*factor phi_f = phi_f.at[0].set(phi_f[0]*jnp.sqrt(2)) phi_a = jnp.exp(-1j*jnp.pi*ks/(2*n)) phi_a = phi_a.at[0].set(phi_a[0]*1/jnp.sqrt(2)) phi_a = phi_a / factor def times(x): upper = (phi_f*x.T).T lower = jnp.zeros((1,)+x.shape[1:]) c = jnp.concatenate((upper, lower)) return jfft.irfft(c, axis=0)[:n] def trans(x): x = jnp.concatenate( (x[:], x[::-1])) c = jfft.rfft(x, axis=0)[:n] prod = jnp.real(phi_a*c.T).T return prod return Operator(times=times, trans=trans, shape=(n,n))
[docs]def walsh_hadamard_basis(n): """Returns an operator which represents the Walsh Hadamard Transform Basis Note: This is a self-adjoint operator """ assert crs.is_power_of_2(n), "Only powers of 2 are supported as n" factor = 1/jnp.sqrt(n) times = lambda x: factor * crdsp.fwht(x) trans = times return Operator(times=times, trans=trans, shape=(n,n))