References

BDDH11

Richard Baraniuk, M Davenport, M Duarte, and Chinmay Hegde. An introduction to compressive sensing. Connexions e-textbook, 2011.

BJ03

Ronen Basri and David W Jacobs. Lambertian reflectance and linear subspaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(2):218–233, 2003.

Bec17

Amir Beck. First-order methods in optimization. SIAM, 2017.

BCG12

Stephen Becker, Emmanuel J Candes, and Michael Grant. Tfocs v1. 2 user guide. 2012.

BCandesG11

Stephen R Becker, Emmanuel J Candès, and Michael C Grant. Templates for convex cone problems with applications to sparse signal recovery. Mathematical programming computation, 3(3):165, 2011. URL: https://doi.org/10.1007/s12532-011-0029-5, doi:10.1007/s12532-011-0029-5.

BD09

Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 27(3):265–274, 2009.

BB91

Terrance E Boult and Lisa Gottesfeld Brown. Factorization-based segmentation of motions. In Visual Motion, 1991., Proceedings of the IEEE Workshop on, 179–186. IEEE, 1991.

BPC+11

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

BV04

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

BD95

Jonathan B Buckheit and David L Donoho. Wavelab and reproducible research. In Wavelets and statistics, pages 55–81. Springer, 1995.

Candes06

Emmanuel J Candès. Compressive sampling. In Proceedings of the International Congress of Mathematicians: Madrid, August 22-30, 2006: invited lectures, 1433–1452. 2006.

CandesW08

Emmanuel J Candès and Michael B Wakin. An introduction to compressive sampling. Signal Processing Magazine, IEEE, 25(2):21–30, 2008.

CDS98

Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by basis pursuit. SIAM journal on scientific computing, 20(1):33–61, 1998.

CCSW14

Yangkang Chen, Keling Chen, Peidong Shi, and Yanyan Wang. Irregular seismic data reconstruction using a percentile-half-thresholding algorithm. Journal of Geophysics and Engineering, 11(6):065001, 2014.

CK98

João Paulo Costeira and Takeo Kanade. A multibody factorization method for independently moving objects. International Journal of Computer Vision, 29(3):159–179, 1998.

DM09

Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. Information Theory, IEEE Transactions on, 55(5):2230–2249, 2009.

DDDM04

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on pure and applied mathematics, 57(11):1413–1457, 2004.

Don06

David L Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52(4):1289–1306, 2006.

DSB13

Eva L Dyer, Aswin C Sankaranarayanan, and Richard G Baraniuk. Greedy feature selection for subspace clustering. The Journal of Machine Learning Research, 14(1):2487–2517, 2013.

Ela10

Michael Elad. Sparse and redundant representations. Springer, 2010.

Fou11

Simon Foucart. Recovering jointly sparse vectors via hard thresholding pursuit. Proc. Sampling Theory and Applications (SampTA)],(May 2-6 2011), 2011.

Gea98

Charles William Gear. Multibody grouping from motion images. International Journal of Computer Vision, 29(2):133–150, 1998.

HYL+03

Jeffrey Ho, Ming-Hsuan Yang, Jongwoo Lim, Kuang-Chih Lee, and David Kriegman. Clustering appearances of objects under varying illumination conditions. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 1, I–11. IEEE, 2003.

Kan01

Kenichi Kanatani. Motion segmentation by subspace separation and model selection. image, 1:1, 2001.

LHK05

Kuang-Chih Lee, Jeffrey Ho, and David Kriegman. Acquiring linear subspaces for face recognition under variable lighting. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(5):684–698, 2005.

lBvdBSC13

Ma lgorzata Bogdana, Ewout van den Bergb, Weijie Suc, and Emmanuel J Candesc. Statistical estimation and testing via the ordered l1 norm. 2013.

Mal08

Stephane Mallat. A wavelet tour of signal processing: the sparse way. Access Online via Elsevier, 2008.

MMN+18

Elaine Crespo Marques, Nilson Maciel, Lirida Naviner, Hao Cai, and Jun Yang. A review of sparse recovery algorithms. IEEE access, 7:1300–1322, 2018. URL: https://doi.org/10.1109/ACCESS.2018.2886471, doi:10.1109/ACCESS.2018.2886471.

NT09

Deanna Needell and Joel A Tropp. Cosamp: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321, 2009.

PRK93

Yagyensh Chandra Pati, Ramin Rezaiifar, and PS Krishnaprasad. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on, 40–44. IEEE, 1993.

PK97

Conrad J Poelman and Takeo Kanade. A paraperspective factorization method for shape and motion recovery. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(3):206–218, 1997.

RV19

Matteo Ravasi and Ivan Vasconcelos. Pylops–a linear-operator python library for large scale optimization. arXiv preprint arXiv:1907.12349, 2019.

TK91

Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. School of Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.

TK92

Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision, 9(2):137–154, 1992.

TC98

Christopher Torrence and Gilbert P Compo. A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1):61–78, 1998.

Tro04

Joel A Tropp. Greed is good: algorithmic results for sparse approximation. Information Theory, IEEE Transactions on, 50(10):2231–2242, 2004.

vdBF08

E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2008. URL: http://link.aip.org/link/?SCE/31/890, doi:10.1137/080714488.

vdBF19

E. van den Berg and M. P. Friedlander. SPGL1: a solver for large-scale sparse reconstruction. December 2019. https://friedlander.io/spgl1.

Vid10

René Vidal. A tutorial on subspace clustering. IEEE Signal Processing Magazine, 28(2):52–68, 2010.

YZ11

Junfeng Yang and Yin Zhang. Alternating direction algorithms for l_1-problems in compressive sensing. SIAM journal on scientific computing, 33(1):250–278, 2011. URL: https://doi.org/10.1137/090777761, doi:10.1137/090777761.

YRV16

Chong You, D Robinson, and René Vidal. Scalable sparse subspace clustering by orthogonal matching pursuit. In IEEE Conference on Computer Vision and Pattern Recognition, volume 1. 2016.

YV15

Chong You and René Vidal. Sparse subspace clustering by orthogonal matching pursuit. arXiv preprint arXiv:1507.01238, 2015.

ZSWL12

Teng Zhang, Arthur Szlam, Yi Wang, and Gilad Lerman. Hybrid linear modeling via local best-fit flats. International Journal of Computer Vision, 100(3):217–240, 2012.

ZYY10

Yin Zhang, Junfeng Yang, and Wotao Yin. User's guide for yall1: your algorithms for l1 optimization: version 1.0. Technical Report, CAAM Department, Rice University, 2010.

ZJMR12

Zhilin Zhang, Tzyy-Ping Jung, Scott Makeig, and Bhaskar D Rao. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ecg via block sparse bayesian learning. IEEE Transactions on Biomedical Engineering, 60(2):300–309, 2012.

ZR12

Zhilin Zhang and Bhaskar D Rao. Recovery of block sparse signals using the framework of block sparse bayesian learning. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3345–3348. IEEE, 2012.

ZR13

Zhilin Zhang and Bhaskar D Rao. Extension of sbl algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Transactions on Signal Processing, 61(8):2009–2015, 2013.

ZE10

Michael Zibulevsky and Michael Elad. L1-l2 optimization in signal and image processing. IEEE Signal Processing Magazine, 27(3):76–88, 2010.