Source code for cr.sparse._src.opt.projectors.lpballs
# Copyright 2021 CR-Suite Development Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from jax import jit, lax
import jax.numpy as jnp
from jax.numpy.linalg import qr, norm
from jax.scipy.linalg import svd
import cr.nimble as cnb
eps = jnp.finfo(float).eps
[docs]def proj_l2_ball(q=1., b=None, A=None):
if b is not None:
b = jnp.asarray(b)
b = cnb.promote_arg_dtypes(b)
if A is not None:
A = jnp.asarray(A)
A = cnb.promote_arg_dtypes(A)
if q <= 0:
raise ValueError("q must be greater than 0")
@jit
def proj_q(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
norm_x = norm(x)
invalid = norm_x > q
def proj_inside(x):
return (q/norm_x) * x
return lax.cond(invalid,
# scale down within the norm ball
proj_inside,
# keep as it is
lambda x: x,
x)
if b is None and A is None:
return proj_q
@jit
def proj_q_b(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
# compute difference from center
r = x - b
norm_r = norm(r)
invalid = norm_r > q
def proj_inside(r):
#TODO the adjustment term should depend on dtype
factor = (q - 1e-7) * jnp.reciprocal(norm_r)
return factor * r
# update r if required
r = lax.cond(invalid,
# scale down within the norm ball
proj_inside,
# keep as it is
lambda r: r,
r)
# move the vector to the center b
x = r + b
return x
if A is None:
return proj_q_b
if b is None:
# we have q and A specified.
# default value for b
b = 0.
raise NotImplementedError("|| A x -b || <= q is not supported yet.")
# We know that A is specified
U, S, Vh = svd(A, full_matrices=False)
m, n = A.shape
rnk = min(m,n)
# square of singular values
S2 = S**2
# @jit
def proj_q_b_A(x):
# compute the residual vector
r = A @ x - b
invalid = norm(r) > q
def project_inside(a):
"""Minimizes ||x - y|| s.t. || Ax - b || <= q
TODO complete this
"""
lambda0 = 0
max_iters = 70
tol = 1e-8*q
# map b to the correct frame
bb = U.T @ b - S * (Vh @ a)
print(bb)
b2 = abs(bb)**2
q2 = q**2
l = lambda0
oldff = 0
one = jnp.ones(rnk)
return x
return project_inside(x)
# update x if required
x = lax.cond(invalid,
project_inside,
# keep as it is
lambda x: x,
x)
return x
return proj_q_b_A
[docs]def proj_l1_ball(q=1., b=None):
r"""Projector functions for || x - b ||_1 <= q
Algorithm 2 in Probing the Pareto frontier is a variant
of this algorithm based on heap data structure and partial
cumulative sums.
"""
if b is not None:
b = jnp.asarray(b)
b = cnb.promote_arg_dtypes(b)
# TODO: This creates problems with JIT
# if q <= 0:
# raise ValueError("q must be greater than 0")
def project_inside_ball(y):
# sort the absolute values in descending order
u = jnp.sort(jnp.abs(y))[::-1]
# compute the cumulative sums
cu = jnp.cumsum(u)
# find the index where the cumulative sum is below the threshold
cu_diff = cu - q
u_scaled = u*jnp.arange(1, 1+len(u))
flags = cu_diff > u_scaled
K = jnp.argmax(flags)
K = jnp.where(K == 0, len(flags), K)
# compute the shrinkage threshold
kappa = (cu[K-1] - q)/K
# perform shrinkage
return jnp.maximum(0, y - kappa) + jnp.minimum(0, y + kappa)
@jit
def proj_q(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
invalid = cnb.arr_l1norm(x) > q
return lax.cond(invalid,
# find the shrinkage threshold and shrink
lambda x: project_inside_ball(x),
# no changes necessary
lambda x : x,
x)
if b is None:
return proj_q
@jit
def proj_q_b(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
# compute difference from center
r = x - b
invalid = cnb.arr_l1norm(r) > q
# update the residual
r = lax.cond(invalid,
# find the shrinkage threshold and shrink
lambda r: project_inside_ball(r),
# no changes necessary
lambda r : r,
r)
# translate to the center
return r + b
return proj_q_b