Source code for cr.sparse._src.opt.smooth.logdet
# Copyright 2021 CR-Suite Development Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from jax import jit, grad, lax
import jax.numpy as jnp
from jax.numpy.linalg import det, cholesky, inv
import cr.nimble as cnb
from .smooth import build2
[docs]def smooth_logdet(q=1., C=None):
r"""Log Det function and its gradient :math:`f(X) = -\log( \text{det}( X ) )`
"""
q = jnp.asarray(q)
q = cnb.promote_arg_dtypes(q)
if C is not None:
C = jnp.asarray(C)
C = cnb.promote_arg_dtypes(C)
@jit
def func(X):
X = jnp.asarray(X)
X = cnb.promote_arg_dtypes(X)
v = -2*q*jnp.sum(jnp.log(jnp.diag(cholesky(X))))
if C is not None:
v = v + cnb.arr_rdot(C, X)
return v
@jit
def gradient(X):
X = jnp.asarray(X)
X = cnb.promote_arg_dtypes(X)
g = -q*inv(X)
if C is not None:
g = g + C
return g
return build2(func, gradient)