Source code for cr.sparse._src.opt.smooth.quad
# Copyright 2021 CR-Suite Development Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from jax import jit, grad, lax
import jax.numpy as jnp
from jax.numpy.linalg import det, cholesky, inv
import cr.nimble as cnb
from .smooth import build2, build3
[docs]def smooth_quad_matrix(P=None, q=None, r=None):
r"""Quadratic function and its gradient :math:`f(x) = \frac{1}{2} x^T P x + \langle q, x \rangle + r`
"""
if P is not None:
P = jnp.asarray(P)
P = cnb.promote_arg_dtypes(P)
if q is not None:
q = jnp.asarray(q)
q = cnb.promote_arg_dtypes(q)
@jit
def func(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
if P is None:
v = 0.5 * cnb.arr_rdot(x, x)
else:
v = 0.5 * cnb.arr_rdot(P @ x, x)
if q is not None:
v = v + cnb.arr_rdot(q, x)
if r is not None:
v = v + r
return v
@jit
def gradient(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
if P is None:
g = x
else:
g = P @ x
if q is not None:
g = g + q
return g
return build2(func, gradient)
[docs]def smooth_quad_error(A, b):
r"""Quadratic error function and its gradient :math:`f(x) = \frac{1}{2} \| A x - b \|_2^2`
"""
@jit
def func(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
r = A @ x - b
return 0.5 * jnp.dot(r, r)
@jit
def gradient(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
r = A @ x - b
g = r.T @ A
return g
@jit
def grad_val(x):
x = jnp.asarray(x)
x = cnb.promote_arg_dtypes(x)
r = A @ x - b
v = 0.5 * jnp.dot(r, r)
g = r.T @ A
return g, v
return build3(func, gradient, grad_val)