Sparse Vectors¶
In this section we explore some useful properties of \(\Sigma_k\), the set of \(k\)-sparse signals in standard basis for \(\mathbb{C}^n\).
We recall that
This set is a union of \(\binom{n}{k}\) subspaces of \(\mathbb{C}^n\) each of which is is constructed by an index set \(\Lambda \subset \{1, \dots, n \}\) with \(| \Lambda | = k\) choosing \(k\) specific dimensions of \(\mathbb{C}^n\).
We first present some lemmas which connect the \(l_1\), \(l_2\) and \(l_{\infty}\) norms of vectors in \(\Sigma_k\).
Suppose \(u \in \Sigma_k\). Then
We can write \(l_1\) norm as
(3)¶\[\| u \|_1 = \langle u, \sgn (u) \rangle.\]By Cauchy-Schwartz inequality we have
(4)¶\[\langle u, \sgn (u) \rangle \leq \| u \|_2 \| \sgn (u) \|_2\]Since \(u \in \Sigma_k\), \(\sgn(u)\) can have at most \(k\) non-zero values each with magnitude 1. Thus, we have
(5)¶\[\| \sgn (u) \|_2^2 \leq k \implies \| \sgn (u) \|_2 \leq \sqrt{k}\]Thus we get the lower bound
(6)¶\[\| u \|_1 \leq \| u \|_2 \sqrt{k} \implies \frac{\| u \|_1}{\sqrt{k}} \leq \| u \|_2.\]Now \(| u_i | \leq \max(| u_i |) = \| u \|_{\infty}\). So we have
(7)¶\[\| u \|_2^2 = \sum_{i= 1}^{n} | u_i |^2 \leq k \| u \|_{\infty}^2\]since there are only \(k\) non-zero terms in the expansion of \(\| u \|_2^2\).
This establishes the upper bound:
(8)¶\[\| u \|_2 \leq \sqrt{k} \| u \|_{\infty}\]