Data Clustering

Vector Quantization

kmeans(key, points, k[, iter, thresh, max_iters])

Clusters points using k-means algorithm

kmeans_jit(key, points, k[, iter, thresh, …])

Clusters points using k-means algorithm

kmeans_with_seed(key, points, k[, thresh, …])

Runs the k-means algorithm for a specific random initialization

kmeans_with_seed_jit(key, points, k[, …])

Runs the k-means algorithm for a specific random initialization

find_nearest(point, centroids)

Returns the index of the nearest centroid for a specific point

find_nearest_jit(point, centroids)

Returns the index of the nearest centroid for a specific point

find_assignment(points, centroids)

Finds the assignment of each point to a specific centroid

find_assignment_jit(points, centroids)

Finds the assignment of each point to a specific centroid

find_new_centroids(assignment, points, k)

Finds new centroids based on current assignment

find_new_centroids_jit(assignment, points, k)

Finds new centroids based on current assignment

Spectral Clustering

unnormalized(key, W)

Unnormalized spectral clustering

unnormalized_k(key, W, k)

Unnormalized spectral clustering with known number of clusters

unnormalized_k_jit(key, W, k)

Unnormalized spectral clustering with known number of clusters

normalized_random_walk(key, W)

Normalized spectral clustering with random walk

Data types

vq.KMeansState

The state for K-means algorithm

vq.KMeansSolution

The solution for K-means algorithm

spectral.SpectralclusteringSolution

The solution for K-means algorithm