Sparse Linear Systems

The solvers in this module focus on traditional least square problems for square or overdetermined linear systems Ax=b where the matrix A is sparse and is represented by a linear operator abstraction providing the matrix multiplication and adjoint multiplication functions.

Solvers

lsqr(A, b, x0[, damp, atol, btol, conlim, …])

Solves the overdetermined system Ax=b in least square sense using LSQR algorithm.

lsqr_jit(A, b, x0[, damp, atol, btol, …])

Solves the overdetermined system Ax=b in least square sense using LSQR algorithm.

power_iterations(operator, b[, max_iters, …])

Computes the largest eigen value of a (symmetric) linear operator by power method

power_iterations_jit(operator, b[, …])

Computes the largest eigen value of a (symmetric) linear operator by power method

ista(operator, b, x0, step_size[, …])

Solves the problem x^=argminx12bAx22+λR(x) via iterative shrinkage and thresholding.

ista_jit(operator, b, x0, step_size[, …])

Solves the problem x^=argminx12bAx22+λR(x) via iterative shrinkage and thresholding.

fista(operator, b, x0, step_size[, …])

Solves the problem x^=argminx12bAx22+λR(x) via fast iterative shrinkage and thresholding.

fista_jit(operator, b, x0, step_size[, …])

Solves the problem x^=argminx12bAx22+λR(x) via fast iterative shrinkage and thresholding.

Data types

LSQRSolution

Solution for LSQR algorithm

PowerIterSolution

Solution of the eigen vector estimate

ISTAState

ISTA algorithm state

FISTAState

ISTA algorithm state