cr.sparse.cvx.adm.yall1.solve¶
- cr.sparse.cvx.adm.yall1.solve(A, b, x0=None, z0=None, W=None, weights=None, nonneg=False, rho=0.0, delta=0.0, gamma=1.0, tolerance=0.005, max_iters=9999, jit=True)[source]¶
Wrapper method to solve a variety of l1 minimization problems using ADMM
- Parameters
A (jax.numpy.ndarray) – Sensing matrix/dictionary
b (jax.numpy.ndarray) – Signal being approximated
x0 (jax.numpy.ndarray) – Initial value of solution (primary variable) \(x\)
z0 (jax.numpy.ndarray) – Initial value of dual variable \(z\)
nonneg (bool) – Flag to indicate if values in the solution are all non-negative
W (jax.numpy.ndarray) – The sparsifying orthonormal basis such that \(W x\) is sparse
weights (jax.numpy.ndarray) – The weights for individual entries in \(x\)
rho (float) – weight for the quadratic penalty term
delta (float) – constraint on the residual norm
gamma (float) – ADMM update parameter for \(x\)
max_iters (int) – maximum number of ADMM iterations
- Returns
Solution vector \(x\) and residual \(r\)
- Return type
RecoveryFullSolution
This function is based on [YZ11]. It implements eq 2.25 of the paper.