cr-sparse
Navigation
Contents:
Quick Start
Introduction
Tutorials
API Docs
Linear Operators
Sparse Linear Systems
Sparsifying Dictionaries and Sensing Matrices
Greedy Sparse Recovery
Convex Relaxation
Optimization
First Order Methods
Block Sparsity
Data Clustering
Sparse Subspace Clustering
Sample Data Generation Utilities
Test Problems
Miscellaneous Algorithms
Evaluation Framework
Algorithms
Theory
Examples Gallery
References
Development
Related Topics
Documentation overview
API Docs
Convex Relaxation
Previous:
cr.sparse.cvx.l1ls.solve_from
Next:
cr.sparse.cvx.l1ls.solve
Quick search
cr.sparse.cvx.l1ls.solve_from_jit
¶
cr.sparse.cvx.l1ls.
solve_from_jit
(
A
,
y
,
lambda_
,
x0
,
u0
,
tol
=
0.001
,
xi
=
0.001
,
t0
=
None
,
max_iters
=
400
,
pcg_max_iters
=
5000
)
¶
Solves
min
‖
A
x
−
b
‖
2
2
+
l
a
m
b
d
a
‖
x
‖
1
using the Truncated Newton Interior Point Method