cr.sparse.dict.random_onb¶
- cr.sparse.dict.random_onb(key, N)[source]¶
Generates a random orthonormal basis for \(\mathbb{R}^N\)
- Parameters
key – a PRNG key used as the random key.
N (int) – Dimension of the vector space
- Returns
A random orthonormal basis for \(\mathbb{R}^N\) of shape (N, N)
- Return type
(jax.numpy.ndarray)
Example
>>> from jax import random >>> import cr.sparse as crs >>> import cr.sparse.dict >>> Phi = cr.sparse.dict.random_onb(random.PRNGKey(0),4) >>> print(Phi) [[-0.382254 -0.266139 0.849797 0.246773] [ 0.518932 -0.068848 -0.035348 0.851305] [ 0.12152 -0.959138 -0.199282 -0.159919] [-0.754867 -0.066964 -0.486706 0.434522]]