cr.sparse.opt.indicator_l1_ball¶
- cr.sparse.opt.indicator_l1_ball(q=1.0, b=None, A=None)[source]¶
Returns an indicator function for the closed l1 ball \(\| A x - b \|_1 \leq q\)
- Parameters
q (float) – Radius of the ball
b (jax.numpy.ndarray) – A vector \(b \in \RR^{m}\)
A (jax.numpy.ndarray) – A matrix \(A \in \RR^{m \times n}\)
- Returns
An indicator function
The indicator function is defined as:
(1)¶\[\begin{split}I(x) = \begin{cases} 0 & \text{if } \| A x - b \|_1 \leq q \\ \infty & \text{otherwise} \end{cases}\end{split}\]Special cases:
indicator_l1_ball()
returns the l1 unit ball \(\| x \|_1 \leq 1\).indicator_l1_ball(q)
returns the l1 ball \(\| x \|_1 \leq q\).indicator_l1_ball(q, b=b)
returns the l1 ball at center \(b\), \(\| x - b\|_1 \leq q\).
Notes:
If center \(b \in \RR^m\) is unspecified, we assume the center to be at origin.
If radius \(q\) is unspecified, we assume the radius to be 1.
If the matrix \(A\) is unspecified, we assume \(A\) to be the identity matrix \(I \in \RR^{n \times n}\).